婷婷综合国产,91蜜桃婷婷狠狠久久综合9色 ,九九九九九精品,国产综合av

主頁 > 知識庫 > PyTorch一小時掌握之遷移學習篇

PyTorch一小時掌握之遷移學習篇

熱門標簽:湛江電銷防封卡 獲客智能電銷機器人 電話機器人適用業(yè)務 佛山防封外呼系統(tǒng)收費 不錯的400電話辦理 徐州天音防封電銷卡 鄭州智能外呼系統(tǒng)運營商 哈爾濱外呼系統(tǒng)代理商 南昌辦理400電話怎么安裝

概述

遷移學習 (Transfer Learning) 是把已學訓練好的模型參數(shù)用作新訓練模型的起始參數(shù). 遷移學習是深度學習中非常重要和常用的一個策略.

為什么使用遷移學習

更好的結果

遷移學習 (Transfer Learning) 可以幫助我們得到更好的結果.

當我們手上的數(shù)據(jù)比較少的時候, 訓練非常容易造成過擬合的現(xiàn)象. 使用遷移學習可以幫助我們通過更少的訓練數(shù)據(jù)達到更好的效果. 使得模型的泛化能力更強, 訓練過程更穩(wěn)定.

節(jié)省時間

遷移學習 (Transfer Learning) 可以幫助我們節(jié)省時間.

通過遷徙學習, 我們站在了巨人的肩膀上. 利用前人花大量時間訓練好的參數(shù), 能幫助我們在模型的訓練上節(jié)省大把的時間.

加載模型

首先我們需要加載模型, 并指定層數(shù). 常用的模型有:

  • VGG
  • ResNet
  • SqueezeNet
  • DenseNet
  • Inception
  • GoogLeNet
  • ShuffleNet
  • MobileNet

官網(wǎng) API

ResNet152

我們將使用 ResNet 152 和 CIFAR 100 來舉例.

凍層實現(xiàn)

def set_parameter_requires_grad(model, feature_extracting):
    """
    是否保留梯度, 實現(xiàn)凍層
    :param model: 模型
    :param feature_extracting: 是否凍層
    :return: 無返回值
    """
    if feature_extracting:  # 如果凍層
        for param in model.parameters():  # 遍歷每個權重參數(shù)
            param.requires_grad = False  # 保留梯度為False

模型初始化

def initialize_model(model_name, num_classes, feature_exact, use_pretrained=True):
    """
    初始化模型
    :param model_name: 模型名字
    :param num_classes: 類別數(shù)
    :param feature_exact: 是否凍層
    :param use_pretrained: 是否下載模型
    :return: 返回模型,
    """

    model_ft = None

    if model_name == "resnet":
        """Resnet152"""

        # 加載模型
        model_ft = models.resnet152(pretrained=use_pretrained)  # 下載參數(shù)
        set_parameter_requires_grad(model_ft, feature_exact)  # 凍層

        # 修改全連接層
        num_features = model_ft.fc.in_features
        model_ft.fc = torch.nn.Sequential(
            torch.nn.Linear(num_features, num_classes),
            torch.nn.LogSoftmax(dim=1)
        )

    # 返回初始化好的模型
    return model_ft

獲取需更新參數(shù)

def parameter_to_update(model):
    """
    獲取需要更新的參數(shù)
    :param model: 模型
    :return: 需要更新的參數(shù)列表
    """

    print("Params to learn")
    param_array = model.parameters()

    if feature_exact:
        param_array = []
        for name, param, in model.named_parameters():
            if param.requires_grad == True:
                param_array.append(param)
                print("\t", name)
    else:
        for name, param, in model.named_parameters():
            if param.requires_grad == True:
                print("\t", name)

    return param_array

訓練模型

def train_model(model, dataloaders, citerion, optimizer, filename, num_epochs=25):
    # 獲取起始時間
    since = time.time()

    # 初始化參數(shù)
    best_acc = 0
    val_acc_history = []
    train_acc_history = []
    train_losses = []
    valid_losses = []
    LRs = [optimizer.param_groups[0]["lr"]]
    best_model_weights = copy.deepcopy(model.state_dict())

    for epoch in range(num_epochs):
        print("Epoch {}/{}".format(epoch, num_epochs - 1))
        print("-" * 10)

        # 訓練和驗證
        for phase in ["train", "valid"]:
            if phase == "train":
                model.train()  # 訓練
            else:
                model.eval()  # 驗證

            running_loss = 0.0
            running_corrects = 0

            # 遍歷數(shù)據(jù)
            for inputs, labels in dataloaders[phase]:
                inputs = inputs.to(device)
                labels = labels.to(device)

                # 梯度清零
                optimizer.zero_grad()

                # 只有訓練的時候計算和更新梯度
                with torch.set_grad_enabled(phase == "train"):
                    outputs = model(inputs)
                    _, preds = torch.max(outputs, 1)

                    # 計算損失
                    loss = criterion(outputs, labels)

                    # 訓練階段更新權重
                    if phase == "train":
                        loss.backward()
                        optimizer.step()

                # 計算損失
                running_loss += loss.item() * inputs.size(0)
                running_corrects += torch.sum(preds == labels.data)

            epoch_loss = running_loss / len(dataloaders[phase].dataset)
            epoch_acc = running_corrects.double() / len(dataloaders[phase].dataset)

            time_eplased = time.time() - since
            print("Time elapsed {:.0f}m {:.0f}s".format(time_eplased // 60, time_eplased % 60))
            print("{} Loss: {:.4f} Acc: {:.4f}".format(phase, epoch_loss, epoch_acc))

            # 得到最好的模型
            if phase == "valid" and epoch_acc > best_acc:
                best_acc = epoch_acc
                best_model_weights = copy.deepcopy(model.state_dict())
                state = {
                    "state_dict": model.state_dict(),
                    "best_acc": best_acc,
                    "optimizer": optimizer.state_dict(),
                }
                torch.save(state, filename)
            if phase == "valid":
                val_acc_history.append(epoch_acc)
                valid_losses.append(epoch_loss)
                scheduler.step(epoch_loss)
            if phase == "train":
                train_acc_history.append(epoch_acc)
                train_losses.append(epoch_loss)

        print("Optimizer learning rate: {:.7f}".format(optimizer.param_groups[0]["lr"]))
        LRs.append(optimizer.param_groups[0]["lr"])
        print()

    time_eplased = time.time() - since
    print("Training complete in {:.0f}m {:.0f}s".format(time_eplased // 60, time_eplased % 60))
    print("Best val Acc: {:4f}".format(best_acc))

    # 訓練完后用最好的一次當做模型最終的結果
    model.load_state_dict(best_model_weights)

    # 返回
    return model, val_acc_history, train_acc_history, valid_losses, train_losses, LRs

獲取數(shù)據(jù)

def get_data():
    """獲取數(shù)據(jù)"""

    # 獲取測試集
    train = torchvision.datasets.CIFAR100(root="./mnt", train=True, download=True,
                                          transform=torchvision.transforms.Compose([
                                              torchvision.transforms.ToTensor(),  # 轉換成張量
                                              torchvision.transforms.Normalize((0.1307,), (0.3081,))  # 標準化
                                          ]))
    train_loader = DataLoader(train, batch_size=batch_size)  # 分割測試集

    # 獲取測試集
    test = torchvision.datasets.CIFAR100(root="./mnt", train=False, download=True,
                                         transform=torchvision.transforms.Compose([
                                             torchvision.transforms.ToTensor(),  # 轉換成張量
                                             torchvision.transforms.Normalize((0.1307,), (0.3081,))  # 標準化
                                         ]))
    test_loader = DataLoader(test, batch_size=batch_size)  # 分割訓練

    data_loader = {"train": train_loader, "valid": test_loader}

    # 返回分割好的訓練集和測試集
    return data_loader

完整代碼

完整代碼:

import copy
import torch
from torch.utils.data import DataLoader
import time
from torchsummary import summary
import torchvision
import torchvision.models as models


def set_parameter_requires_grad(model, feature_extracting):
    """
    是否保留梯度, 實現(xiàn)凍層
    :param model: 模型
    :param feature_extracting: 是否凍層
    :return: 無返回值
    """
    if feature_extracting:  # 如果凍層
        for param in model.parameters():  # 遍歷每個權重參數(shù)
            param.requires_grad = False  # 保留梯度為False


def initialize_model(model_name, num_classes, feature_exact, use_pretrained=True):
    """
    初始化模型
    :param model_name: 模型名字
    :param num_classes: 類別數(shù)
    :param feature_exact: 是否凍層
    :param use_pretrained: 是否下載模型
    :return: 返回模型,
    """

    model_ft = None

    if model_name == "resnet":
        """Resnet152"""

        # 加載模型
        model_ft = models.resnet152(pretrained=use_pretrained)  # 下載參數(shù)
        set_parameter_requires_grad(model_ft, feature_exact)  # 凍層

        # 修改全連接層
        num_features = model_ft.fc.in_features
        model_ft.fc = torch.nn.Sequential(
            torch.nn.Linear(num_features, num_classes),
            torch.nn.LogSoftmax(dim=1)
        )

    # 返回初始化好的模型
    return model_ft


def parameter_to_update(model):
    """
    獲取需要更新的參數(shù)
    :param model: 模型
    :return: 需要更新的參數(shù)列表
    """

    print("Params to learn")
    param_array = model.parameters()

    if feature_exact:
        param_array = []
        for name, param, in model.named_parameters():
            if param.requires_grad == True:
                param_array.append(param)
                print("\t", name)
    else:
        for name, param, in model.named_parameters():
            if param.requires_grad == True:
                print("\t", name)

    return param_array


def train_model(model, dataloaders, citerion, optimizer, filename, num_epochs=25):
    # 獲取起始時間
    since = time.time()

    # 初始化參數(shù)
    best_acc = 0
    val_acc_history = []
    train_acc_history = []
    train_losses = []
    valid_losses = []
    LRs = [optimizer.param_groups[0]["lr"]]
    best_model_weights = copy.deepcopy(model.state_dict())

    for epoch in range(num_epochs):
        print("Epoch {}/{}".format(epoch, num_epochs - 1))
        print("-" * 10)

        # 訓練和驗證
        for phase in ["train", "valid"]:
            if phase == "train":
                model.train()  # 訓練
            else:
                model.eval()  # 驗證

            running_loss = 0.0
            running_corrects = 0

            # 遍歷數(shù)據(jù)
            for inputs, labels in dataloaders[phase]:
                inputs = inputs.to(device)
                labels = labels.to(device)

                # 梯度清零
                optimizer.zero_grad()

                # 只有訓練的時候計算和更新梯度
                with torch.set_grad_enabled(phase == "train"):
                    outputs = model(inputs)
                    _, preds = torch.max(outputs, 1)

                    # 計算損失
                    loss = criterion(outputs, labels)

                    # 訓練階段更新權重
                    if phase == "train":
                        loss.backward()
                        optimizer.step()

                # 計算損失
                running_loss += loss.item() * inputs.size(0)
                running_corrects += torch.sum(preds == labels.data)

            epoch_loss = running_loss / len(dataloaders[phase].dataset)
            epoch_acc = running_corrects.double() / len(dataloaders[phase].dataset)

            time_eplased = time.time() - since
            print("Time elapsed {:.0f}m {:.0f}s".format(time_eplased // 60, time_eplased % 60))
            print("{} Loss: {:.4f} Acc: {:.4f}".format(phase, epoch_loss, epoch_acc))

            # 得到最好的模型
            if phase == "valid" and epoch_acc > best_acc:
                best_acc = epoch_acc
                best_model_weights = copy.deepcopy(model.state_dict())
                state = {
                    "state_dict": model.state_dict(),
                    "best_acc": best_acc,
                    "optimizer": optimizer.state_dict(),
                }
                torch.save(state, filename)
            if phase == "valid":
                val_acc_history.append(epoch_acc)
                valid_losses.append(epoch_loss)
                scheduler.step(epoch_loss)
            if phase == "train":
                train_acc_history.append(epoch_acc)
                train_losses.append(epoch_loss)

        print("Optimizer learning rate: {:.7f}".format(optimizer.param_groups[0]["lr"]))
        LRs.append(optimizer.param_groups[0]["lr"])
        print()

    time_eplased = time.time() - since
    print("Training complete in {:.0f}m {:.0f}s".format(time_eplased // 60, time_eplased % 60))
    print("Best val Acc: {:4f}".format(best_acc))

    # 訓練完后用最好的一次當做模型最終的結果
    model.load_state_dict(best_model_weights)

    # 返回
    return model, val_acc_history, train_acc_history, valid_losses, train_losses, LRs


def get_data():
    """獲取數(shù)據(jù)"""

    # 獲取測試集
    train = torchvision.datasets.CIFAR100(root="./mnt", train=True, download=True,
                                          transform=torchvision.transforms.Compose([
                                              torchvision.transforms.ToTensor(),  # 轉換成張量
                                              torchvision.transforms.Normalize((0.1307,), (0.3081,))  # 標準化
                                          ]))
    train_loader = DataLoader(train, batch_size=batch_size)  # 分割測試集

    # 獲取測試集
    test = torchvision.datasets.CIFAR100(root="./mnt", train=False, download=True,
                                         transform=torchvision.transforms.Compose([
                                             torchvision.transforms.ToTensor(),  # 轉換成張量
                                             torchvision.transforms.Normalize((0.1307,), (0.3081,))  # 標準化
                                         ]))
    test_loader = DataLoader(test, batch_size=batch_size)  # 分割訓練

    data_loader = {"train": train_loader, "valid": test_loader}

    # 返回分割好的訓練集和測試集
    return data_loader


# 超參數(shù)
filename = "checkpoint.pth"  # 模型保存
feature_exact = True  # 凍層
num_classes = 100  # 輸出的類別數(shù)
batch_size = 1024  # 一次訓練的樣本數(shù)目
iteration_num = 10  # 迭代次數(shù)

# 獲取模型
resnet152 = initialize_model(
    model_name="resnet",
    num_classes=num_classes,
    feature_exact=feature_exact,
    use_pretrained=True
)

# 是否使用GPU訓練
use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
if use_cuda: resnet152.cuda()  # GPU 計算
print("是否使用 GPU 加速:", use_cuda)

# 輸出網(wǎng)絡結構
print(summary(resnet152, (3, 32, 32)))

# 訓練參數(shù)
params_to_update = parameter_to_update(resnet152)

# 優(yōu)化器
optimizer = torch.optim.Adam(params_to_update, lr=0.01)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1)  # 學習率每10個epoch衰減到原來的1/10
criterion = torch.nn.NLLLoss()

if __name__ == "__main__":
    data_loader = get_data()
    resnet152, val_acc_history, train_acc_history, valid_losses, train_losses, LRs = train_model(
        model=resnet152,
        dataloaders=data_loader,
        citerion=criterion,
        optimizer=optimizer,
        num_epochs=iteration_num,
        filename=filename
    )

輸出結果:

是否使用 GPU 加速: True
----------------------------------------------------------------
Layer (type) Output Shape Param #
================================================================
Conv2d-1 [-1, 64, 16, 16] 9,408
BatchNorm2d-2 [-1, 64, 16, 16] 128
ReLU-3 [-1, 64, 16, 16] 0
MaxPool2d-4 [-1, 64, 8, 8] 0
Conv2d-5 [-1, 64, 8, 8] 4,096
BatchNorm2d-6 [-1, 64, 8, 8] 128
ReLU-7 [-1, 64, 8, 8] 0
Conv2d-8 [-1, 64, 8, 8] 36,864
BatchNorm2d-9 [-1, 64, 8, 8] 128
ReLU-10 [-1, 64, 8, 8] 0
Conv2d-11 [-1, 256, 8, 8] 16,384
BatchNorm2d-12 [-1, 256, 8, 8] 512
Conv2d-13 [-1, 256, 8, 8] 16,384
BatchNorm2d-14 [-1, 256, 8, 8] 512
ReLU-15 [-1, 256, 8, 8] 0
Bottleneck-16 [-1, 256, 8, 8] 0
Conv2d-17 [-1, 64, 8, 8] 16,384
BatchNorm2d-18 [-1, 64, 8, 8] 128
ReLU-19 [-1, 64, 8, 8] 0
Conv2d-20 [-1, 64, 8, 8] 36,864
BatchNorm2d-21 [-1, 64, 8, 8] 128
ReLU-22 [-1, 64, 8, 8] 0
Conv2d-23 [-1, 256, 8, 8] 16,384
BatchNorm2d-24 [-1, 256, 8, 8] 512
ReLU-25 [-1, 256, 8, 8] 0
Bottleneck-26 [-1, 256, 8, 8] 0
Conv2d-27 [-1, 64, 8, 8] 16,384
BatchNorm2d-28 [-1, 64, 8, 8] 128
ReLU-29 [-1, 64, 8, 8] 0
Conv2d-30 [-1, 64, 8, 8] 36,864
BatchNorm2d-31 [-1, 64, 8, 8] 128
ReLU-32 [-1, 64, 8, 8] 0
Conv2d-33 [-1, 256, 8, 8] 16,384
BatchNorm2d-34 [-1, 256, 8, 8] 512
ReLU-35 [-1, 256, 8, 8] 0
Bottleneck-36 [-1, 256, 8, 8] 0
Conv2d-37 [-1, 128, 8, 8] 32,768
BatchNorm2d-38 [-1, 128, 8, 8] 256
ReLU-39 [-1, 128, 8, 8] 0
Conv2d-40 [-1, 128, 4, 4] 147,456
BatchNorm2d-41 [-1, 128, 4, 4] 256
ReLU-42 [-1, 128, 4, 4] 0
Conv2d-43 [-1, 512, 4, 4] 65,536
BatchNorm2d-44 [-1, 512, 4, 4] 1,024
Conv2d-45 [-1, 512, 4, 4] 131,072
BatchNorm2d-46 [-1, 512, 4, 4] 1,024
ReLU-47 [-1, 512, 4, 4] 0
Bottleneck-48 [-1, 512, 4, 4] 0
Conv2d-49 [-1, 128, 4, 4] 65,536
BatchNorm2d-50 [-1, 128, 4, 4] 256
ReLU-51 [-1, 128, 4, 4] 0
Conv2d-52 [-1, 128, 4, 4] 147,456
BatchNorm2d-53 [-1, 128, 4, 4] 256
ReLU-54 [-1, 128, 4, 4] 0
Conv2d-55 [-1, 512, 4, 4] 65,536
BatchNorm2d-56 [-1, 512, 4, 4] 1,024
ReLU-57 [-1, 512, 4, 4] 0
Bottleneck-58 [-1, 512, 4, 4] 0
Conv2d-59 [-1, 128, 4, 4] 65,536
BatchNorm2d-60 [-1, 128, 4, 4] 256
ReLU-61 [-1, 128, 4, 4] 0
Conv2d-62 [-1, 128, 4, 4] 147,456
BatchNorm2d-63 [-1, 128, 4, 4] 256
ReLU-64 [-1, 128, 4, 4] 0
Conv2d-65 [-1, 512, 4, 4] 65,536
BatchNorm2d-66 [-1, 512, 4, 4] 1,024
ReLU-67 [-1, 512, 4, 4] 0
Bottleneck-68 [-1, 512, 4, 4] 0
Conv2d-69 [-1, 128, 4, 4] 65,536
BatchNorm2d-70 [-1, 128, 4, 4] 256
ReLU-71 [-1, 128, 4, 4] 0
Conv2d-72 [-1, 128, 4, 4] 147,456
BatchNorm2d-73 [-1, 128, 4, 4] 256
ReLU-74 [-1, 128, 4, 4] 0
Conv2d-75 [-1, 512, 4, 4] 65,536
BatchNorm2d-76 [-1, 512, 4, 4] 1,024
ReLU-77 [-1, 512, 4, 4] 0
Bottleneck-78 [-1, 512, 4, 4] 0
Conv2d-79 [-1, 128, 4, 4] 65,536
BatchNorm2d-80 [-1, 128, 4, 4] 256
ReLU-81 [-1, 128, 4, 4] 0
Conv2d-82 [-1, 128, 4, 4] 147,456
BatchNorm2d-83 [-1, 128, 4, 4] 256
ReLU-84 [-1, 128, 4, 4] 0
Conv2d-85 [-1, 512, 4, 4] 65,536
BatchNorm2d-86 [-1, 512, 4, 4] 1,024
ReLU-87 [-1, 512, 4, 4] 0
Bottleneck-88 [-1, 512, 4, 4] 0
Conv2d-89 [-1, 128, 4, 4] 65,536
BatchNorm2d-90 [-1, 128, 4, 4] 256
ReLU-91 [-1, 128, 4, 4] 0
Conv2d-92 [-1, 128, 4, 4] 147,456
BatchNorm2d-93 [-1, 128, 4, 4] 256
ReLU-94 [-1, 128, 4, 4] 0
Conv2d-95 [-1, 512, 4, 4] 65,536
BatchNorm2d-96 [-1, 512, 4, 4] 1,024
ReLU-97 [-1, 512, 4, 4] 0
Bottleneck-98 [-1, 512, 4, 4] 0
Conv2d-99 [-1, 128, 4, 4] 65,536
BatchNorm2d-100 [-1, 128, 4, 4] 256
ReLU-101 [-1, 128, 4, 4] 0
Conv2d-102 [-1, 128, 4, 4] 147,456
BatchNorm2d-103 [-1, 128, 4, 4] 256
ReLU-104 [-1, 128, 4, 4] 0
Conv2d-105 [-1, 512, 4, 4] 65,536
BatchNorm2d-106 [-1, 512, 4, 4] 1,024
ReLU-107 [-1, 512, 4, 4] 0
Bottleneck-108 [-1, 512, 4, 4] 0
Conv2d-109 [-1, 128, 4, 4] 65,536
BatchNorm2d-110 [-1, 128, 4, 4] 256
ReLU-111 [-1, 128, 4, 4] 0
Conv2d-112 [-1, 128, 4, 4] 147,456
BatchNorm2d-113 [-1, 128, 4, 4] 256
ReLU-114 [-1, 128, 4, 4] 0
Conv2d-115 [-1, 512, 4, 4] 65,536
BatchNorm2d-116 [-1, 512, 4, 4] 1,024
ReLU-117 [-1, 512, 4, 4] 0
Bottleneck-118 [-1, 512, 4, 4] 0
Conv2d-119 [-1, 256, 4, 4] 131,072
BatchNorm2d-120 [-1, 256, 4, 4] 512
ReLU-121 [-1, 256, 4, 4] 0
Conv2d-122 [-1, 256, 2, 2] 589,824
BatchNorm2d-123 [-1, 256, 2, 2] 512
ReLU-124 [-1, 256, 2, 2] 0
Conv2d-125 [-1, 1024, 2, 2] 262,144
BatchNorm2d-126 [-1, 1024, 2, 2] 2,048
Conv2d-127 [-1, 1024, 2, 2] 524,288
BatchNorm2d-128 [-1, 1024, 2, 2] 2,048
ReLU-129 [-1, 1024, 2, 2] 0
Bottleneck-130 [-1, 1024, 2, 2] 0
Conv2d-131 [-1, 256, 2, 2] 262,144
BatchNorm2d-132 [-1, 256, 2, 2] 512
ReLU-133 [-1, 256, 2, 2] 0
Conv2d-134 [-1, 256, 2, 2] 589,824
BatchNorm2d-135 [-1, 256, 2, 2] 512
ReLU-136 [-1, 256, 2, 2] 0
Conv2d-137 [-1, 1024, 2, 2] 262,144
BatchNorm2d-138 [-1, 1024, 2, 2] 2,048
ReLU-139 [-1, 1024, 2, 2] 0
Bottleneck-140 [-1, 1024, 2, 2] 0
Conv2d-141 [-1, 256, 2, 2] 262,144
BatchNorm2d-142 [-1, 256, 2, 2] 512
ReLU-143 [-1, 256, 2, 2] 0
Conv2d-144 [-1, 256, 2, 2] 589,824
BatchNorm2d-145 [-1, 256, 2, 2] 512
ReLU-146 [-1, 256, 2, 2] 0
Conv2d-147 [-1, 1024, 2, 2] 262,144
BatchNorm2d-148 [-1, 1024, 2, 2] 2,048
ReLU-149 [-1, 1024, 2, 2] 0
Bottleneck-150 [-1, 1024, 2, 2] 0
Conv2d-151 [-1, 256, 2, 2] 262,144
BatchNorm2d-152 [-1, 256, 2, 2] 512
ReLU-153 [-1, 256, 2, 2] 0
Conv2d-154 [-1, 256, 2, 2] 589,824
BatchNorm2d-155 [-1, 256, 2, 2] 512
ReLU-156 [-1, 256, 2, 2] 0
Conv2d-157 [-1, 1024, 2, 2] 262,144
BatchNorm2d-158 [-1, 1024, 2, 2] 2,048
ReLU-159 [-1, 1024, 2, 2] 0
Bottleneck-160 [-1, 1024, 2, 2] 0
Conv2d-161 [-1, 256, 2, 2] 262,144
BatchNorm2d-162 [-1, 256, 2, 2] 512
ReLU-163 [-1, 256, 2, 2] 0
Conv2d-164 [-1, 256, 2, 2] 589,824
BatchNorm2d-165 [-1, 256, 2, 2] 512
ReLU-166 [-1, 256, 2, 2] 0
Conv2d-167 [-1, 1024, 2, 2] 262,144
BatchNorm2d-168 [-1, 1024, 2, 2] 2,048
ReLU-169 [-1, 1024, 2, 2] 0
Bottleneck-170 [-1, 1024, 2, 2] 0
Conv2d-171 [-1, 256, 2, 2] 262,144
BatchNorm2d-172 [-1, 256, 2, 2] 512
ReLU-173 [-1, 256, 2, 2] 0
Conv2d-174 [-1, 256, 2, 2] 589,824
BatchNorm2d-175 [-1, 256, 2, 2] 512
ReLU-176 [-1, 256, 2, 2] 0
Conv2d-177 [-1, 1024, 2, 2] 262,144
BatchNorm2d-178 [-1, 1024, 2, 2] 2,048
ReLU-179 [-1, 1024, 2, 2] 0
Bottleneck-180 [-1, 1024, 2, 2] 0
Conv2d-181 [-1, 256, 2, 2] 262,144
BatchNorm2d-182 [-1, 256, 2, 2] 512
ReLU-183 [-1, 256, 2, 2] 0
Conv2d-184 [-1, 256, 2, 2] 589,824
BatchNorm2d-185 [-1, 256, 2, 2] 512
ReLU-186 [-1, 256, 2, 2] 0
Conv2d-187 [-1, 1024, 2, 2] 262,144
BatchNorm2d-188 [-1, 1024, 2, 2] 2,048
ReLU-189 [-1, 1024, 2, 2] 0
Bottleneck-190 [-1, 1024, 2, 2] 0
Conv2d-191 [-1, 256, 2, 2] 262,144
BatchNorm2d-192 [-1, 256, 2, 2] 512
ReLU-193 [-1, 256, 2, 2] 0
Conv2d-194 [-1, 256, 2, 2] 589,824
BatchNorm2d-195 [-1, 256, 2, 2] 512
ReLU-196 [-1, 256, 2, 2] 0
Conv2d-197 [-1, 1024, 2, 2] 262,144
BatchNorm2d-198 [-1, 1024, 2, 2] 2,048
ReLU-199 [-1, 1024, 2, 2] 0
Bottleneck-200 [-1, 1024, 2, 2] 0
Conv2d-201 [-1, 256, 2, 2] 262,144
BatchNorm2d-202 [-1, 256, 2, 2] 512
ReLU-203 [-1, 256, 2, 2] 0
Conv2d-204 [-1, 256, 2, 2] 589,824
BatchNorm2d-205 [-1, 256, 2, 2] 512
ReLU-206 [-1, 256, 2, 2] 0
Conv2d-207 [-1, 1024, 2, 2] 262,144
BatchNorm2d-208 [-1, 1024, 2, 2] 2,048
ReLU-209 [-1, 1024, 2, 2] 0
Bottleneck-210 [-1, 1024, 2, 2] 0
Conv2d-211 [-1, 256, 2, 2] 262,144
BatchNorm2d-212 [-1, 256, 2, 2] 512
ReLU-213 [-1, 256, 2, 2] 0
Conv2d-214 [-1, 256, 2, 2] 589,824
BatchNorm2d-215 [-1, 256, 2, 2] 512
ReLU-216 [-1, 256, 2, 2] 0
Conv2d-217 [-1, 1024, 2, 2] 262,144
BatchNorm2d-218 [-1, 1024, 2, 2] 2,048
ReLU-219 [-1, 1024, 2, 2] 0
Bottleneck-220 [-1, 1024, 2, 2] 0
Conv2d-221 [-1, 256, 2, 2] 262,144
BatchNorm2d-222 [-1, 256, 2, 2] 512
ReLU-223 [-1, 256, 2, 2] 0
Conv2d-224 [-1, 256, 2, 2] 589,824
BatchNorm2d-225 [-1, 256, 2, 2] 512
ReLU-226 [-1, 256, 2, 2] 0
Conv2d-227 [-1, 1024, 2, 2] 262,144
BatchNorm2d-228 [-1, 1024, 2, 2] 2,048
ReLU-229 [-1, 1024, 2, 2] 0
Bottleneck-230 [-1, 1024, 2, 2] 0
Conv2d-231 [-1, 256, 2, 2] 262,144
BatchNorm2d-232 [-1, 256, 2, 2] 512
ReLU-233 [-1, 256, 2, 2] 0
Conv2d-234 [-1, 256, 2, 2] 589,824
BatchNorm2d-235 [-1, 256, 2, 2] 512
ReLU-236 [-1, 256, 2, 2] 0
Conv2d-237 [-1, 1024, 2, 2] 262,144
BatchNorm2d-238 [-1, 1024, 2, 2] 2,048
ReLU-239 [-1, 1024, 2, 2] 0
Bottleneck-240 [-1, 1024, 2, 2] 0
Conv2d-241 [-1, 256, 2, 2] 262,144
BatchNorm2d-242 [-1, 256, 2, 2] 512
ReLU-243 [-1, 256, 2, 2] 0
Conv2d-244 [-1, 256, 2, 2] 589,824
BatchNorm2d-245 [-1, 256, 2, 2] 512
ReLU-246 [-1, 256, 2, 2] 0
Conv2d-247 [-1, 1024, 2, 2] 262,144
BatchNorm2d-248 [-1, 1024, 2, 2] 2,048
ReLU-249 [-1, 1024, 2, 2] 0
Bottleneck-250 [-1, 1024, 2, 2] 0
Conv2d-251 [-1, 256, 2, 2] 262,144
BatchNorm2d-252 [-1, 256, 2, 2] 512
ReLU-253 [-1, 256, 2, 2] 0
Conv2d-254 [-1, 256, 2, 2] 589,824
BatchNorm2d-255 [-1, 256, 2, 2] 512
ReLU-256 [-1, 256, 2, 2] 0
Conv2d-257 [-1, 1024, 2, 2] 262,144
BatchNorm2d-258 [-1, 1024, 2, 2] 2,048
ReLU-259 [-1, 1024, 2, 2] 0
Bottleneck-260 [-1, 1024, 2, 2] 0
Conv2d-261 [-1, 256, 2, 2] 262,144
BatchNorm2d-262 [-1, 256, 2, 2] 512
ReLU-263 [-1, 256, 2, 2] 0
Conv2d-264 [-1, 256, 2, 2] 589,824
BatchNorm2d-265 [-1, 256, 2, 2] 512
ReLU-266 [-1, 256, 2, 2] 0
Conv2d-267 [-1, 1024, 2, 2] 262,144
BatchNorm2d-268 [-1, 1024, 2, 2] 2,048
ReLU-269 [-1, 1024, 2, 2] 0
Bottleneck-270 [-1, 1024, 2, 2] 0
Conv2d-271 [-1, 256, 2, 2] 262,144
BatchNorm2d-272 [-1, 256, 2, 2] 512
ReLU-273 [-1, 256, 2, 2] 0
Conv2d-274 [-1, 256, 2, 2] 589,824
BatchNorm2d-275 [-1, 256, 2, 2] 512
ReLU-276 [-1, 256, 2, 2] 0
Conv2d-277 [-1, 1024, 2, 2] 262,144
BatchNorm2d-278 [-1, 1024, 2, 2] 2,048
ReLU-279 [-1, 1024, 2, 2] 0
Bottleneck-280 [-1, 1024, 2, 2] 0
Conv2d-281 [-1, 256, 2, 2] 262,144
BatchNorm2d-282 [-1, 256, 2, 2] 512
ReLU-283 [-1, 256, 2, 2] 0
Conv2d-284 [-1, 256, 2, 2] 589,824
BatchNorm2d-285 [-1, 256, 2, 2] 512
ReLU-286 [-1, 256, 2, 2] 0
Conv2d-287 [-1, 1024, 2, 2] 262,144
BatchNorm2d-288 [-1, 1024, 2, 2] 2,048
ReLU-289 [-1, 1024, 2, 2] 0
Bottleneck-290 [-1, 1024, 2, 2] 0
Conv2d-291 [-1, 256, 2, 2] 262,144
BatchNorm2d-292 [-1, 256, 2, 2] 512
ReLU-293 [-1, 256, 2, 2] 0
Conv2d-294 [-1, 256, 2, 2] 589,824
BatchNorm2d-295 [-1, 256, 2, 2] 512
ReLU-296 [-1, 256, 2, 2] 0
Conv2d-297 [-1, 1024, 2, 2] 262,144
BatchNorm2d-298 [-1, 1024, 2, 2] 2,048
ReLU-299 [-1, 1024, 2, 2] 0
Bottleneck-300 [-1, 1024, 2, 2] 0
Conv2d-301 [-1, 256, 2, 2] 262,144
BatchNorm2d-302 [-1, 256, 2, 2] 512
ReLU-303 [-1, 256, 2, 2] 0
Conv2d-304 [-1, 256, 2, 2] 589,824
BatchNorm2d-305 [-1, 256, 2, 2] 512
ReLU-306 [-1, 256, 2, 2] 0
Conv2d-307 [-1, 1024, 2, 2] 262,144
BatchNorm2d-308 [-1, 1024, 2, 2] 2,048
ReLU-309 [-1, 1024, 2, 2] 0
Bottleneck-310 [-1, 1024, 2, 2] 0
Conv2d-311 [-1, 256, 2, 2] 262,144
BatchNorm2d-312 [-1, 256, 2, 2] 512
ReLU-313 [-1, 256, 2, 2] 0
Conv2d-314 [-1, 256, 2, 2] 589,824
BatchNorm2d-315 [-1, 256, 2, 2] 512
ReLU-316 [-1, 256, 2, 2] 0
Conv2d-317 [-1, 1024, 2, 2] 262,144
BatchNorm2d-318 [-1, 1024, 2, 2] 2,048
ReLU-319 [-1, 1024, 2, 2] 0
Bottleneck-320 [-1, 1024, 2, 2] 0
Conv2d-321 [-1, 256, 2, 2] 262,144
BatchNorm2d-322 [-1, 256, 2, 2] 512
ReLU-323 [-1, 256, 2, 2] 0
Conv2d-324 [-1, 256, 2, 2] 589,824
BatchNorm2d-325 [-1, 256, 2, 2] 512
ReLU-326 [-1, 256, 2, 2] 0
Conv2d-327 [-1, 1024, 2, 2] 262,144
BatchNorm2d-328 [-1, 1024, 2, 2] 2,048
ReLU-329 [-1, 1024, 2, 2] 0
Bottleneck-330 [-1, 1024, 2, 2] 0
Conv2d-331 [-1, 256, 2, 2] 262,144
BatchNorm2d-332 [-1, 256, 2, 2] 512
ReLU-333 [-1, 256, 2, 2] 0
Conv2d-334 [-1, 256, 2, 2] 589,824
BatchNorm2d-335 [-1, 256, 2, 2] 512
ReLU-336 [-1, 256, 2, 2] 0
Conv2d-337 [-1, 1024, 2, 2] 262,144
BatchNorm2d-338 [-1, 1024, 2, 2] 2,048
ReLU-339 [-1, 1024, 2, 2] 0
Bottleneck-340 [-1, 1024, 2, 2] 0
Conv2d-341 [-1, 256, 2, 2] 262,144
BatchNorm2d-342 [-1, 256, 2, 2] 512
ReLU-343 [-1, 256, 2, 2] 0
Conv2d-344 [-1, 256, 2, 2] 589,824
BatchNorm2d-345 [-1, 256, 2, 2] 512
ReLU-346 [-1, 256, 2, 2] 0
Conv2d-347 [-1, 1024, 2, 2] 262,144
BatchNorm2d-348 [-1, 1024, 2, 2] 2,048
ReLU-349 [-1, 1024, 2, 2] 0
Bottleneck-350 [-1, 1024, 2, 2] 0
Conv2d-351 [-1, 256, 2, 2] 262,144
BatchNorm2d-352 [-1, 256, 2, 2] 512
ReLU-353 [-1, 256, 2, 2] 0
Conv2d-354 [-1, 256, 2, 2] 589,824
BatchNorm2d-355 [-1, 256, 2, 2] 512
ReLU-356 [-1, 256, 2, 2] 0
Conv2d-357 [-1, 1024, 2, 2] 262,144
BatchNorm2d-358 [-1, 1024, 2, 2] 2,048
ReLU-359 [-1, 1024, 2, 2] 0
Bottleneck-360 [-1, 1024, 2, 2] 0
Conv2d-361 [-1, 256, 2, 2] 262,144
BatchNorm2d-362 [-1, 256, 2, 2] 512
ReLU-363 [-1, 256, 2, 2] 0
Conv2d-364 [-1, 256, 2, 2] 589,824
BatchNorm2d-365 [-1, 256, 2, 2] 512
ReLU-366 [-1, 256, 2, 2] 0
Conv2d-367 [-1, 1024, 2, 2] 262,144
BatchNorm2d-368 [-1, 1024, 2, 2] 2,048
ReLU-369 [-1, 1024, 2, 2] 0
Bottleneck-370 [-1, 1024, 2, 2] 0
Conv2d-371 [-1, 256, 2, 2] 262,144
BatchNorm2d-372 [-1, 256, 2, 2] 512
ReLU-373 [-1, 256, 2, 2] 0
Conv2d-374 [-1, 256, 2, 2] 589,824
BatchNorm2d-375 [-1, 256, 2, 2] 512
ReLU-376 [-1, 256, 2, 2] 0
Conv2d-377 [-1, 1024, 2, 2] 262,144
BatchNorm2d-378 [-1, 1024, 2, 2] 2,048
ReLU-379 [-1, 1024, 2, 2] 0
Bottleneck-380 [-1, 1024, 2, 2] 0
Conv2d-381 [-1, 256, 2, 2] 262,144
BatchNorm2d-382 [-1, 256, 2, 2] 512
ReLU-383 [-1, 256, 2, 2] 0
Conv2d-384 [-1, 256, 2, 2] 589,824
BatchNorm2d-385 [-1, 256, 2, 2] 512
ReLU-386 [-1, 256, 2, 2] 0
Conv2d-387 [-1, 1024, 2, 2] 262,144
BatchNorm2d-388 [-1, 1024, 2, 2] 2,048
ReLU-389 [-1, 1024, 2, 2] 0
Bottleneck-390 [-1, 1024, 2, 2] 0
Conv2d-391 [-1, 256, 2, 2] 262,144
BatchNorm2d-392 [-1, 256, 2, 2] 512
ReLU-393 [-1, 256, 2, 2] 0
Conv2d-394 [-1, 256, 2, 2] 589,824
BatchNorm2d-395 [-1, 256, 2, 2] 512
ReLU-396 [-1, 256, 2, 2] 0
Conv2d-397 [-1, 1024, 2, 2] 262,144
BatchNorm2d-398 [-1, 1024, 2, 2] 2,048
ReLU-399 [-1, 1024, 2, 2] 0
Bottleneck-400 [-1, 1024, 2, 2] 0
Conv2d-401 [-1, 256, 2, 2] 262,144
BatchNorm2d-402 [-1, 256, 2, 2] 512
ReLU-403 [-1, 256, 2, 2] 0
Conv2d-404 [-1, 256, 2, 2] 589,824
BatchNorm2d-405 [-1, 256, 2, 2] 512
ReLU-406 [-1, 256, 2, 2] 0
Conv2d-407 [-1, 1024, 2, 2] 262,144
BatchNorm2d-408 [-1, 1024, 2, 2] 2,048
ReLU-409 [-1, 1024, 2, 2] 0
Bottleneck-410 [-1, 1024, 2, 2] 0
Conv2d-411 [-1, 256, 2, 2] 262,144
BatchNorm2d-412 [-1, 256, 2, 2] 512
ReLU-413 [-1, 256, 2, 2] 0
Conv2d-414 [-1, 256, 2, 2] 589,824
BatchNorm2d-415 [-1, 256, 2, 2] 512
ReLU-416 [-1, 256, 2, 2] 0
Conv2d-417 [-1, 1024, 2, 2] 262,144
BatchNorm2d-418 [-1, 1024, 2, 2] 2,048
ReLU-419 [-1, 1024, 2, 2] 0
Bottleneck-420 [-1, 1024, 2, 2] 0
Conv2d-421 [-1, 256, 2, 2] 262,144
BatchNorm2d-422 [-1, 256, 2, 2] 512
ReLU-423 [-1, 256, 2, 2] 0
Conv2d-424 [-1, 256, 2, 2] 589,824
BatchNorm2d-425 [-1, 256, 2, 2] 512
ReLU-426 [-1, 256, 2, 2] 0
Conv2d-427 [-1, 1024, 2, 2] 262,144
BatchNorm2d-428 [-1, 1024, 2, 2] 2,048
ReLU-429 [-1, 1024, 2, 2] 0
Bottleneck-430 [-1, 1024, 2, 2] 0
Conv2d-431 [-1, 256, 2, 2] 262,144
BatchNorm2d-432 [-1, 256, 2, 2] 512
ReLU-433 [-1, 256, 2, 2] 0
Conv2d-434 [-1, 256, 2, 2] 589,824
BatchNorm2d-435 [-1, 256, 2, 2] 512
ReLU-436 [-1, 256, 2, 2] 0
Conv2d-437 [-1, 1024, 2, 2] 262,144
BatchNorm2d-438 [-1, 1024, 2, 2] 2,048
ReLU-439 [-1, 1024, 2, 2] 0
Bottleneck-440 [-1, 1024, 2, 2] 0
Conv2d-441 [-1, 256, 2, 2] 262,144
BatchNorm2d-442 [-1, 256, 2, 2] 512
ReLU-443 [-1, 256, 2, 2] 0
Conv2d-444 [-1, 256, 2, 2] 589,824
BatchNorm2d-445 [-1, 256, 2, 2] 512
ReLU-446 [-1, 256, 2, 2] 0
Conv2d-447 [-1, 1024, 2, 2] 262,144
BatchNorm2d-448 [-1, 1024, 2, 2] 2,048
ReLU-449 [-1, 1024, 2, 2] 0
Bottleneck-450 [-1, 1024, 2, 2] 0
Conv2d-451 [-1, 256, 2, 2] 262,144
BatchNorm2d-452 [-1, 256, 2, 2] 512
ReLU-453 [-1, 256, 2, 2] 0
Conv2d-454 [-1, 256, 2, 2] 589,824
BatchNorm2d-455 [-1, 256, 2, 2] 512
ReLU-456 [-1, 256, 2, 2] 0
Conv2d-457 [-1, 1024, 2, 2] 262,144
BatchNorm2d-458 [-1, 1024, 2, 2] 2,048
ReLU-459 [-1, 1024, 2, 2] 0
Bottleneck-460 [-1, 1024, 2, 2] 0
Conv2d-461 [-1, 256, 2, 2] 262,144
BatchNorm2d-462 [-1, 256, 2, 2] 512
ReLU-463 [-1, 256, 2, 2] 0
Conv2d-464 [-1, 256, 2, 2] 589,824
BatchNorm2d-465 [-1, 256, 2, 2] 512
ReLU-466 [-1, 256, 2, 2] 0
Conv2d-467 [-1, 1024, 2, 2] 262,144
BatchNorm2d-468 [-1, 1024, 2, 2] 2,048
ReLU-469 [-1, 1024, 2, 2] 0
Bottleneck-470 [-1, 1024, 2, 2] 0
Conv2d-471 [-1, 256, 2, 2] 262,144
BatchNorm2d-472 [-1, 256, 2, 2] 512
ReLU-473 [-1, 256, 2, 2] 0
Conv2d-474 [-1, 256, 2, 2] 589,824
BatchNorm2d-475 [-1, 256, 2, 2] 512
ReLU-476 [-1, 256, 2, 2] 0
Conv2d-477 [-1, 1024, 2, 2] 262,144
BatchNorm2d-478 [-1, 1024, 2, 2] 2,048
ReLU-479 [-1, 1024, 2, 2] 0
Bottleneck-480 [-1, 1024, 2, 2] 0
Conv2d-481 [-1, 512, 2, 2] 524,288
BatchNorm2d-482 [-1, 512, 2, 2] 1,024
ReLU-483 [-1, 512, 2, 2] 0
Conv2d-484 [-1, 512, 1, 1] 2,359,296
BatchNorm2d-485 [-1, 512, 1, 1] 1,024
ReLU-486 [-1, 512, 1, 1] 0
Conv2d-487 [-1, 2048, 1, 1] 1,048,576
BatchNorm2d-488 [-1, 2048, 1, 1] 4,096
Conv2d-489 [-1, 2048, 1, 1] 2,097,152
BatchNorm2d-490 [-1, 2048, 1, 1] 4,096
ReLU-491 [-1, 2048, 1, 1] 0
Bottleneck-492 [-1, 2048, 1, 1] 0
Conv2d-493 [-1, 512, 1, 1] 1,048,576
BatchNorm2d-494 [-1, 512, 1, 1] 1,024
ReLU-495 [-1, 512, 1, 1] 0
Conv2d-496 [-1, 512, 1, 1] 2,359,296
BatchNorm2d-497 [-1, 512, 1, 1] 1,024
ReLU-498 [-1, 512, 1, 1] 0
Conv2d-499 [-1, 2048, 1, 1] 1,048,576
BatchNorm2d-500 [-1, 2048, 1, 1] 4,096
ReLU-501 [-1, 2048, 1, 1] 0
Bottleneck-502 [-1, 2048, 1, 1] 0
Conv2d-503 [-1, 512, 1, 1] 1,048,576
BatchNorm2d-504 [-1, 512, 1, 1] 1,024
ReLU-505 [-1, 512, 1, 1] 0
Conv2d-506 [-1, 512, 1, 1] 2,359,296
BatchNorm2d-507 [-1, 512, 1, 1] 1,024
ReLU-508 [-1, 512, 1, 1] 0
Conv2d-509 [-1, 2048, 1, 1] 1,048,576
BatchNorm2d-510 [-1, 2048, 1, 1] 4,096
ReLU-511 [-1, 2048, 1, 1] 0
Bottleneck-512 [-1, 2048, 1, 1] 0
AdaptiveAvgPool2d-513 [-1, 2048, 1, 1] 0
Linear-514 [-1, 100] 204,900
LogSoftmax-515 [-1, 100] 0
================================================================
Total params: 58,348,708
Trainable params: 204,900
Non-trainable params: 58,143,808
----------------------------------------------------------------
Input size (MB): 0.01
Forward/backward pass size (MB): 12.40
Params size (MB): 222.58
Estimated Total Size (MB): 234.99
----------------------------------------------------------------
None
Params to learn
fc.0.weight
fc.0.bias
Files already downloaded and verified
Files already downloaded and verified
Epoch 0/9
----------
Time elapsed 0m 21s
train Loss: 7.5111 Acc: 0.1484
Time elapsed 0m 26s
valid Loss: 3.7821 Acc: 0.2493
/usr/local/lib/python3.7/dist-packages/torch/optim/lr_scheduler.py:154: UserWarning: The epoch parameter in `scheduler.step()` was not necessary and is being deprecated where possible. Please use `scheduler.step()` to step the scheduler. During the deprecation, if epoch is different from None, the closed form is used instead of the new chainable form, where available. Please open an issue if you are unable to replicate your use case: https://github.com/pytorch/pytorch/issues/new/choose.
warnings.warn(EPOCH_DEPRECATION_WARNING, UserWarning)
Optimizer learning rate: 0.0100000

Epoch 1/9
----------
Time elapsed 0m 47s
train Loss: 2.9405 Acc: 0.3109
Time elapsed 0m 52s
valid Loss: 3.2014 Acc: 0.2739
Optimizer learning rate: 0.0100000

Epoch 2/9
----------
Time elapsed 1m 12s
train Loss: 2.5866 Acc: 0.3622
Time elapsed 1m 17s
valid Loss: 3.2239 Acc: 0.2787
Optimizer learning rate: 0.0100000

Epoch 3/9
----------
Time elapsed 1m 38s
train Loss: 2.4077 Acc: 0.3969
Time elapsed 1m 43s
valid Loss: 3.2608 Acc: 0.2811
Optimizer learning rate: 0.0100000

Epoch 4/9
----------
Time elapsed 2m 4s
train Loss: 2.2742 Acc: 0.4263
Time elapsed 2m 9s
valid Loss: 3.4260 Acc: 0.2689
Optimizer learning rate: 0.0100000

Epoch 5/9
----------
Time elapsed 2m 29s
train Loss: 2.1942 Acc: 0.4434
Time elapsed 2m 34s
valid Loss: 3.4697 Acc: 0.2760
Optimizer learning rate: 0.0100000

Epoch 6/9
----------
Time elapsed 2m 54s
train Loss: 2.1369 Acc: 0.4583
Time elapsed 2m 59s
valid Loss: 3.5391 Acc: 0.2744
Optimizer learning rate: 0.0100000

Epoch 7/9
----------
Time elapsed 3m 20s
train Loss: 2.0382 Acc: 0.4771
Time elapsed 3m 24s
valid Loss: 3.5992 Acc: 0.2721
Optimizer learning rate: 0.0100000

Epoch 8/9
----------
Time elapsed 3m 45s
train Loss: 1.9776 Acc: 0.4939
Time elapsed 3m 50s
valid Loss: 3.7533 Acc: 0.2685
Optimizer learning rate: 0.0100000

Epoch 9/9
----------
Time elapsed 4m 11s
train Loss: 1.9309 Acc: 0.5035
Time elapsed 4m 16s
valid Loss: 3.9663 Acc: 0.2558
Optimizer learning rate: 0.0100000

Training complete in 4m 16s
Best val Acc: 0.281100

到此這篇關于PyTorch一小時掌握之遷移學習篇的文章就介紹到這了,更多相關PyTorch遷移學習內容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關文章希望大家以后多多支持腳本之家!

您可能感興趣的文章:
  • Pytorch模型遷移和遷移學習,導入部分模型參數(shù)的操作
  • PyTorch 遷移學習實踐(幾分鐘即可訓練好自己的模型)

標簽:蘭州 紹興 吉安 懷化 呂梁 安康 蕪湖 廣西

巨人網(wǎng)絡通訊聲明:本文標題《PyTorch一小時掌握之遷移學習篇》,本文關鍵詞  PyTorch,一小時,掌握,之,遷移,;如發(fā)現(xiàn)本文內容存在版權問題,煩請?zhí)峁┫嚓P信息告之我們,我們將及時溝通與處理。本站內容系統(tǒng)采集于網(wǎng)絡,涉及言論、版權與本站無關。
  • 相關文章
  • 下面列出與本文章《PyTorch一小時掌握之遷移學習篇》相關的同類信息!
  • 本頁收集關于PyTorch一小時掌握之遷移學習篇的相關信息資訊供網(wǎng)民參考!
  • 推薦文章
    婷婷综合国产,91蜜桃婷婷狠狠久久综合9色 ,九九九九九精品,国产综合av
    成人国产在线观看| 日韩一区二区视频| 日韩欧美激情在线| 国产精品国产三级国产普通话三级| 一区二区三区在线免费观看| 国产一区二区三区精品欧美日韩一区二区三区 | 99在线精品免费| 日韩免费观看2025年上映的电影| 亚洲三级小视频| 成人精品一区二区三区四区 | 国产精品美女久久久久久| 男人的j进女人的j一区| 欧美性受极品xxxx喷水| 国产精品欧美一级免费| 国产伦精品一区二区三区在线观看| 6080午夜不卡| 午夜欧美视频在线观看| 色婷婷综合中文久久一本| 国产精品短视频| av中文一区二区三区| 国产欧美日韩视频一区二区 | 美女视频黄久久| 666欧美在线视频| 日本女人一区二区三区| 91精品午夜视频| 奇米影视7777精品一区二区| 欧美一区二区三区色| 日韩av一区二区三区四区| 欧美一区二区不卡视频| 久久精品国产成人一区二区三区| 3d动漫精品啪啪1区2区免费| 日韩国产在线观看| 日韩美女一区二区三区四区| 久久精品二区亚洲w码| 久久影视一区二区| 粉嫩久久99精品久久久久久夜 | www久久久久| 国产99精品在线观看| 中文字幕一区二区三区精华液| 99视频在线观看一区三区| 一区二区三区日韩欧美精品 | 色婷婷综合久久久久中文| 一区二区三区在线免费视频| 欧美高清视频在线高清观看mv色露露十八 | 色综合天天天天做夜夜夜夜做| 有码一区二区三区| 9191精品国产综合久久久久久| 日韩福利电影在线| 日本一区二区三区高清不卡 | 国产性天天综合网| 99久久婷婷国产| 天堂影院一区二区| 久久婷婷久久一区二区三区| www.亚洲国产| 日韩国产精品91| 中文字幕国产精品一区二区| 欧美影院一区二区| 国产一区二区三区| 亚洲综合久久久久| 久久久国产一区二区三区四区小说| 成人av手机在线观看| 午夜影院久久久| 国产午夜精品一区二区| 精品视频一区三区九区| 国产伦精品一区二区三区免费| 亚洲精品乱码久久久久久久久| 欧美精品久久99| av中文字幕亚洲| 紧缚捆绑精品一区二区| 亚洲一区二区三区三| 久久精品视频免费| 欧美裸体bbwbbwbbw| 91在线免费播放| 国内成人免费视频| 亚洲高清视频的网址| 国产精品女主播av| 精品三级av在线| 欧美在线不卡视频| 99视频国产精品| 国产精品亚洲午夜一区二区三区| 亚洲h在线观看| 最新日韩在线视频| 国产拍欧美日韩视频二区| 日韩午夜精品视频| 欧美在线一区二区三区| 成人性生交大片免费| 久久99热狠狠色一区二区| 亚洲成人av一区| 一区二区在线观看免费| 中文字幕制服丝袜成人av| 精品久久一区二区三区| 欧美一区二区在线免费播放| 欧美特级限制片免费在线观看| 99国产精品国产精品毛片| 国产成人综合在线| 国产乱子伦视频一区二区三区| 蜜桃视频免费观看一区| 亚洲大片精品永久免费| 亚洲一区免费视频| 亚洲国产美女搞黄色| 亚洲女同一区二区| 最新高清无码专区| 日韩理论电影院| 中文字幕中文乱码欧美一区二区| 国产日韩成人精品| 亚洲国产精品v| 中文字幕在线不卡一区二区三区 | 91网站最新地址| 99久久精品情趣| 91视频免费播放| 91麻豆国产香蕉久久精品| 91麻豆精东视频| 欧洲国内综合视频| 欧美日韩国产首页| 日韩午夜三级在线| 久久视频一区二区| 国产欧美综合在线观看第十页| 欧美极品另类videosde| 中文字幕在线免费不卡| 一区二区三区四区不卡在线 | 不卡视频一二三| 色婷婷亚洲一区二区三区| 欧美影视一区在线| 欧美电影免费观看高清完整版在线 | 亚洲视频图片小说| 亚洲国产美女搞黄色| 美女视频一区在线观看| 国产成人综合网站| 色综合咪咪久久| 欧美一区二区三区成人| 久久久久久久久久久久久女国产乱| 国产日产欧美一区二区视频| 中文文精品字幕一区二区| 一区二区三区在线视频免费观看| 婷婷开心激情综合| 国产成人在线视频网址| 在线看国产一区| 日韩欧美国产麻豆| 1000部国产精品成人观看| 日韩国产在线观看| 波多野结衣的一区二区三区| 欧美在线免费视屏| 国产午夜久久久久| 亚洲在线一区二区三区| 国产中文字幕精品| 欧美在线视频全部完| 久久久久久99精品| 亚洲成a人在线观看| 国产91对白在线观看九色| 欧美老肥妇做.爰bbww| 国产亚洲欧美激情| 青青草伊人久久| 不卡的av电影在线观看| 日韩视频一区在线观看| 一区二区三区欧美在线观看| 老司机午夜精品| 欧美日韩一区视频| 中文字幕在线不卡| 国产一区二三区| 欧美精品少妇一区二区三区| 综合av第一页| 国产成人综合在线| 日韩免费视频一区| 亚洲成人激情自拍| 色偷偷久久一区二区三区| 久久亚洲精品小早川怜子| 日韩av二区在线播放| 欧美专区日韩专区| 亚洲三级在线看| 成人一级视频在线观看| 久久毛片高清国产| 奇米亚洲午夜久久精品| 欧美日韩免费不卡视频一区二区三区| 国产精品色哟哟| 国产精品中文有码| 欧美大片免费久久精品三p| 午夜精品一区二区三区免费视频| 不卡视频一二三| 国产精品美女一区二区三区 | 色婷婷av一区二区三区大白胸| 国产三级精品三级在线专区| 激情综合网天天干| 精品91自产拍在线观看一区| 日韩国产高清在线| 91精品国产综合久久福利| 亚洲一区在线视频观看| 欧美亚洲国产一区二区三区va| 亚洲精品一卡二卡| 欧美亚洲自拍偷拍| 亚洲国产另类av| 欧美日韩国产首页在线观看| 丝袜亚洲另类欧美综合| 欧美久久一二区| 六月婷婷色综合| 精品电影一区二区| 国产盗摄一区二区三区| 亚洲天堂2014| 欧洲精品在线观看| 蜜桃视频一区二区| 国产视频911|