婷婷综合国产,91蜜桃婷婷狠狠久久综合9色 ,九九九九九精品,国产综合av

主頁 > 知識庫 > python爬蟲之爬取谷歌趨勢數據

python爬蟲之爬取谷歌趨勢數據

熱門標簽:地圖標注的意義點 地圖制圖標注位置改變是移位嗎 南京銷售外呼系統軟件 315電話機器人廣告 蓋州市地圖標注 房產電銷外呼系統 浙江電銷卡外呼系統好用嗎 地圖標注微信發送位置不顯示 上海機器人外呼系統哪家好

一、前言 

爬取谷歌趨勢數據需要科學上網~

二、思路

谷歌數據的爬取很簡單,就是代碼有點長。主要分下面幾個就行了

爬取的三個界面返回的都是json數據。主要獲取對應的token值和req,然后構造url請求數據就行

token值和req值都在這個鏈接的返回數據里。解析后得到token和req就行

socks5代理不太懂,抄網上的作業,假如了當前程序的全局代理后就可以跑了。全部代碼如下

import socket
import socks
import requests
import json
import pandas as pd
import logging

#加入socks5代理后,可以獲得當前程序的全局代理
socks.set_default_proxy(socks.SOCKS5,"127.0.0.1",1080)
socket.socket = socks.socksocket

#加入以下代碼,否則會出現InsecureRequestWarning警告,雖然不影響使用,但看著糟心
# 捕捉警告
logging.captureWarnings(True)
# 或者加入以下代碼,忽略requests證書警告
# from requests.packages.urllib3.exceptions import InsecureRequestWarning
# requests.packages.urllib3.disable_warnings(InsecureRequestWarning)

# 將三個頁面獲得的數據存為DataFrame
time_trends = pd.DataFrame()
related_topic = pd.DataFrame()
related_search = pd.DataFrame()

#填入自己打開網頁的請求頭
headers = {
    'user-agent': 'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.114 Safari/537.36',
    'x-client-data': 'CJa2yQEIorbJAQjEtskBCKmdygEI+MfKAQjM3soBCLKaywEI45zLAQioncsBGOGaywE=Decoded:message ClientVariations {// Active client experiment variation IDs.repeated int32 variation_id = [3300118, 3300130, 3300164, 3313321, 3318776, 3321676, 3329330, 3329635, 3329704];// Active client experiment variation IDs that trigger server-side behavior.repeated int32 trigger_variation_id = [3329377];}',
    'referer': 'https://trends.google.com/trends/explore',
    'cookie': '__utmc=10102256; __utmz=10102256.1617948191.1.1.utmcsr=(direct)|utmccn=(direct)|utmcmd=(none); __utma=10102256.889828344.1617948191.1617948191.1617956555.3; __utmt=1; __utmb=10102256.5.9.1617956603932; SID=8AfEx31goq255ga6Ldt9ljEVZ5xQ7fYTAdzCK3DgEYp2s6MOxeKc__hQ90tTtn0W-6AVoQ.; __Secure-3PSID=8AfEx31goq255ga6Ldt9ljEVZ5xQ7fYTAdzCK3DgEYp2s6MOLU4HYHzyoAXIvtAhfF_WNg.; HSID=AELT1m_DoHJY-r6SW; SSID=AJSlRt0T7ngXXMtqv; APISID=3Nt6oALGV8kSym2M/A2QeNBMtb9P7VcIwV; SAPISID=iAA0fu76JZezPfK4/Apws7zK1y-o74b2YD; __Secure-3PAPISID=iAA0fu76JZezPfK4/Apws7zK1y-o74b2YD; 1P_JAR=2021-04-06-06; SEARCH_SAMESITE=CgQIo5IB; NID=213=oYQE35gIVD2DrxbpY7NdAQsAEyg-If7Jh_nBdSKTkvmtgaVV7tYeSQNq_636cysbsajJP3_dKfr95w51ywK-dxVYhzPP4Zll9JndBYY98vd_XegGoeLEevpxIhNxUAv6H24OVt_edoGFkSjTpWKn4QAoIoerHCViyvozrvGF7m4scupppmxN-h9dwm1nrs15I3b_E-ifLq0lgd9s7QrgA-FRuaDeyuXN8t1K7l_DMTB1jkE5ED_dC-_QAO7DDw; SIDCC=AJi4QfFdMiK_qV41ViVJf0wWmtOu8yUVSQc_UEvemoaQwTGI9W0w2XwwkMCufVcYIS5ogRSkq5w; __Secure-3PSIDCC=AJi4QfEmB-gnzZLHWR4p1EmOfS2dhSz9zWSGNGOozrY2udFk4KwVmVo_srZdZrmdy7h_mwLSwQ'
}


# 獲取需要的三個界面的req值和token值
def get_token_req(keyword):
    url = 'https://trends.google.com/trends/api/explore?hl=zh-CNtz=-480req={{"comparisonItem":[{{"keyword":"{}","geo":"US","time":"today 12-m"}}],"category":0,"property":""}}tz=-480'.format(
        keyword)
    html = requests.get(url, headers=headers, verify=False).text
    data = json.loads(html[5:])

    req_1 = data['widgets'][0]['request']
    token_1 = data['widgets'][0]['token']

    req_2 = data['widgets'][2]['request']
    token_2 = data['widgets'][2]['token']

    req_3 = data['widgets'][3]['request']
    token_3 = data['widgets'][3]['token']

    result = {'req_1': req_1, 'token_1': token_1, 'req_2': req_2, 'token_2': token_2, 'req_3': req_3,
              'token_3': token_3}
    return result


# 請求三個界面的數據,返回的是json數據,所以數據不用解析,完美
def get_info(keyword):
    content = []
    keyword = keyword
    result = get_token_req(keyword)

    #第一個界面
    req_1 = result['req_1']
    token_1 = result['token_1']
    url_1 = "https://trends.google.com/trends/api/widgetdata/multiline?hl=zh-CNtz=-480req={}token={}tz=-480".format(
        req_1, token_1)
    r_1 = requests.get(url_1, headers=headers, verify=False)
    if r_1.status_code == 200:
        try:
            content_1 = r_1.content
            content_1 = json.loads(content_1.decode('unicode_escape')[6:])['default']['timelineData']
            result_1 = pd.json_normalize(content_1)
            result_1['value'] = result_1['value'].map(lambda x: x[0])
            result_1['keyword'] = keyword
        except Exception as e:
            print(e)
            result_1 = None
    else:
        print(r_1.status_code)

    #第二個界面
    req_2 = result['req_2']
    token_2 = result['token_2']
    url_2 = 'https://trends.google.com/trends/api/widgetdata/relatedsearches?hl=zh-CNtz=-480req={}token={}'.format(
        req_2, token_2)
    r_2 = requests.get(url_2, headers=headers, verify=False)
    if r_2.status_code == 200:
        try:
            content_2 = r_2.content
            content_2 = json.loads(content_2.decode('unicode_escape')[6:])['default']['rankedList'][1]['rankedKeyword']
            result_2 = pd.json_normalize(content_2)
            result_2['link'] = "https://trends.google.com" + result_2['link']
            result_2['keyword'] = keyword
        except Exception as e:
            print(e)
            result_2 = None
    else:
        print(r_2.status_code)

    #第三個界面
    req_3 = result['req_3']
    token_3 = result['token_3']
    url_3 = 'https://trends.google.com/trends/api/widgetdata/relatedsearches?hl=zh-CNtz=-480req={}token={}'.format(
        req_3, token_3)
    r_3 = requests.get(url_3, headers=headers, verify=False)
    if r_3.status_code == 200:
        try:
            content_3 = r_3.content
            content_3 = json.loads(content_3.decode('unicode_escape')[6:])['default']['rankedList'][1]['rankedKeyword']
            result_3 = pd.json_normalize(content_3)
            result_3['link'] = "https://trends.google.com" + result_3['link']
            result_3['keyword'] = keyword
        except Exception as e:
            print(e)
            result_3 = None
    else:
        print(r_3.status_code)

    content = [result_1, result_2, result_3]

    return content

def main():
    global time_trends,related_search,related_topic
    with open(r'C:\Users\Desktop\words.txt','r',encoding = 'utf-8') as f:
        words = f.readlines()
    for keyword in words:
        keyword = keyword.strip()
        data_all = get_info(keyword)
        time_trends = pd.concat([time_trends,data_all[0]],sort = False)
        related_topic = pd.concat([related_topic,data_all[1]],sort = False)
        related_search = pd.concat([related_search,data_all[2]],sort = False)

if __name__ == "__main__":
    main()

到此這篇關于python爬蟲之爬取谷歌趨勢數據的文章就介紹到這了,更多相關python爬取谷歌趨勢內容請搜索腳本之家以前的文章或繼續瀏覽下面的相關文章希望大家以后多多支持腳本之家!

您可能感興趣的文章:
  • 教你如何使用Python快速爬取需要的數據
  • python爬取豆瓣電影TOP250數據
  • python爬取鏈家二手房的數據
  • Python手拉手教你爬取貝殼房源數據的實戰教程
  • Python數據分析之Python和Selenium爬取BOSS直聘崗位
  • python selenium實現智聯招聘數據爬取
  • python爬蟲之教你如何爬取地理數據
  • Python爬蟲爬取全球疫情數據并存儲到mysql數據庫的步驟
  • Python爬取騰訊疫情實時數據并存儲到mysql數據庫的示例代碼
  • Python爬蟲之自動爬取某車之家各車銷售數據

標簽:日照 赤峰 克拉瑪依 陽泉 雙鴨山 臨汾 金華 貴州

巨人網絡通訊聲明:本文標題《python爬蟲之爬取谷歌趨勢數據》,本文關鍵詞  python,爬蟲,之爬,取,谷歌,;如發現本文內容存在版權問題,煩請提供相關信息告之我們,我們將及時溝通與處理。本站內容系統采集于網絡,涉及言論、版權與本站無關。
  • 相關文章
  • 下面列出與本文章《python爬蟲之爬取谷歌趨勢數據》相關的同類信息!
  • 本頁收集關于python爬蟲之爬取谷歌趨勢數據的相關信息資訊供網民參考!
  • 推薦文章
    主站蜘蛛池模板: 那曲县| 博湖县| 襄樊市| 宿迁市| 永福县| 安陆市| 汕尾市| 珲春市| 长宁县| 绥宁县| 常州市| 望谟县| 兴城市| 含山县| 广水市| 南乐县| 荔波县| 航空| 藁城市| 温泉县| 格尔木市| 兴安县| 大荔县| 内江市| 肃南| 三台县| 安陆市| 娱乐| 甘肃省| 永靖县| 西平县| 克拉玛依市| 大连市| 佛冈县| 青海省| 涞源县| 睢宁县| 嘉兴市| 上蔡县| 进贤县| 茶陵县|