婷婷综合国产,91蜜桃婷婷狠狠久久综合9色 ,九九九九九精品,国产综合av

主頁 > 知識庫 > 利用pandas按日期做分組運算的操作

利用pandas按日期做分組運算的操作

熱門標簽:在哪里辦理400電話號碼 西藏智能外呼系統五星服務 400電話申請服務商選什么 清遠360地圖標注方法 江蘇客服外呼系統廠家 千陽自動外呼系統 原裝電話機器人 平頂山外呼系統免費 工廠智能電話機器人

原始數據

TS PERIOD REQUEST STEPPED VALUE STATUS SECONDS
20-DEC-16 00:00:00.0 600 1 0  2.018 0 1482163200
20-DEC-16 00:01:00.0 600 1 0  2.019 0 1482163260
20-DEC-16 00:02:00.0 600 1 0  2.019 0 1482163320
20-DEC-16 00:03:00.0 600 1 0  2.019 0 1482163380
20-DEC-16 00:04:00.0 600 1 0  2.019 0 1482163440
20-DEC-16 00:05:00.0 600 1 0  2.020 0 1482163500
20-DEC-16 00:06:00.0 600 1 0  2.020 0 1482163560

我們的目標是把TS列從

20-DEC-16 00:00:00.0

轉變為

20-DEC-16

的格式,然后按天取均值。

導入包

import numpy as np
from pandas import DataFrame, Series
import pandas as pd
from datetime import datetime

讀入文件

df = pd.read_csv('data/test.txt',sep='\t')

這里沒有解決中文路徑名和絕對路徑的問題.

轉化為數據框

df = DataFrame(df)

轉化為時間格式

將TS列轉化為時間格式,并保存為新的一列DATE,之后,只留下DATE和VALUE兩列,其他統統不要。

df['DATE'] = pd.to_datetime(df['TS'])
df = df[['DATE','VALUE']]

關鍵一步

把形如‘2017-9-4 00:00:00'轉化為‘2017-9-4 '

df['DATE'] = [datetime.strftime(x,'%Y-%m-%d') for x in df['DATE']]

strftime有若干參數,其中Y表示四位數的年,m表示兩位數的月。

旋轉數據框

df =df.pivot_table(index='DATE',aggfunc='mean')

補充:利用Pandas和Numpy按時間戳將數據以Groupby方式分組

首先說一下需求,我需要將數據以分鐘為單位進行分組,然后每一分鐘內的數據作為一行輸出,因為不同時間的數據量不一樣,所以所有數據按照最長的那組數據為準,不足的數據以各自的最后一個數據進行補足。

之后要介紹一下我的數據源,之前沒用的數據列已經去除,我只留下要用到的數據data列和時間戳time列,時間戳是以秒計的,可以看到一共是407454行。


   data   time
0  6522.50 1.530668e+09
1  6522.66 1.530668e+09
2  6523.79 1.530668e+09
3  6523.79 1.530668e+09
4  6524.82 1.530668e+09
5  6524.35 1.530668e+09
6  6523.66 1.530668e+09
7  6522.64 1.530668e+09
8  6523.25 1.530668e+09
9  6523.88 1.530668e+09
10  6525.30 1.530668e+09
11  6525.70 1.530668e+09
...   ...   ...
407443 6310.69 1.531302e+09
407444 6310.55 1.531302e+09
407445 6310.42 1.531302e+09
407446 6310.40 1.531302e+09
407447 6314.03 1.531302e+09
407448 6314.04 1.531302e+09
407449 6312.84 1.531302e+09
407450 6312.57 1.531302e+09
407451 6312.56 1.531302e+09
407452 6314.04 1.531302e+09
407453 6314.04 1.531302e+09
 
[407454 rows x 2 columns]

開始進行數據處理,定義一個函數,輸入為一個DataFrame和時間列的命名。

def getdata_time(dataframe,name):
 dataframe[name] = dataframe[name]/60 #將時間轉換為分鐘
 dataframe[name] = dataframe[name].astype('int64') 
 datalen = dataframe.groupby(name).count().max()  #獲取數據最大長度 
 timeframe = dataframe.groupby(name).count().reset_index()#為了獲取時間將分組后時間轉換為DataFrame
 timeseries = timeframe['time'] 
 array = []  #建立一個空數組以便存值

 for time, group in dataframe.groupby(name): 
 tmparray = numpy.array(group['data']) #將series轉換為數組并添加到總數組中
 array.append(tmparray) 
 notimedata = pandas.DataFrame(array)
 notimedata = notimedata.fillna(method='ffill',axis = 1,limit=datalen[0]) #將缺失值補全
 notimedata[datalen[0]+1] = timeseries #把時間添加到最后一列 
 return notimedata

下面將逐行進行分析,首先要以每分鐘為依據進行分組,那么將秒計的時間戳除以60變為分鐘,轉換為int型是為了觀察方便(更改類型是否會導致數據精度缺失影響結果并不清楚,如果有了解的人看到歡迎指出,謝謝)。

datalen是我們要用到的每分鐘中最大的數據長度,用來作為標齊依據。DataFrame.groupby.count()是分別顯示每組數據的個數,并不是顯示有多少個分組,如果想要獲取分組后每一組的index就需要用到下一行的reset_index方法,之所以不直接用reset_index而是在count()方法后調用是因為groupby分組后的結果不是一個DataFrame,而經過count()(不僅僅是count,對分組數據操作的方法都可以,只要得出的結果是與每一組的index一一對應即可)操作后就可以得到一個以index為一列,另一列是count結果的DataFrame。

以下為直接進行reset_index操作的報錯:

AttributeError: Cannot access callable attribute 'reset_index' of 'DataFrameGroupBy' objects, try using the 'apply' method

以下為經過count操作后的reset_index方法顯示結果,可以看到一共分為了10397組:

   time data
0  25511135 33
1  25511136 18
2  25511137 25
3  25511138 42
4  25511139 36
5  25511140  7
6  25511141 61
7  25511142 45
8  25511143 46
9  25511144 19
10  25511145 21
...   ... ...
10387 25521697  3
10388 25521698  9
10389 25521699 16
10390 25521700 13
10391 25521701  4
10392 25521702 34
10393 25521703 124
10394 25521704 302
10395 25521705 86
10396 25521706 52
 
[10397 rows x 2 columns]

提取的timeseries將在最后數據整合時使用。

現在開始將每組數據提取,首先建立一個空的數組用來存放,然后利用for循環獲取每一組的信息,time即為分組的index,group即為每一分組的內容,將數據從group['data']中取出并添加到之前建立的空數組里,循環操作過后轉換為DataFrame,當然這個DataFrame中包含了大量缺失值,因為它的列數是以最長的數據為準。

如下:

   0  1  2  3  ... 1143 1144 1145 1146
0  6522.50 6522.66 6523.79 6523.79 ... NaN NaN NaN NaN
1  6523.95 6524.90 6525.00 6524.35 ... NaN NaN NaN NaN
2  6520.87 6520.00 6520.45 6520.46 ... NaN NaN NaN NaN
3  6516.34 6516.26 6516.21 6516.21 ... NaN NaN NaN NaN
4  6513.28 6514.00 6514.00 6514.00 ... NaN NaN NaN NaN
5  6511.98 6511.98 6511.99 6513.00 ... NaN NaN NaN NaN
6  6511.00 6511.00 6511.00 6511.00 ... NaN NaN NaN NaN
7  6511.70 6511.78 6511.99 6511.99 ... NaN NaN NaN NaN
8  6509.51 6510.00 6510.80 6510.80 ... NaN NaN NaN NaN
9  6511.36 6510.00 6510.00 6510.00 ... NaN NaN NaN NaN
10  6507.00 6507.00 6507.00 6507.00 ... NaN NaN NaN NaN
...  ...  ...  ...  ... ... ... ... ... ...
10386 6333.77 6331.31 6331.30 6333.19 ... NaN NaN NaN NaN
10387 6331.68 6331.30 6331.68  NaN ... NaN NaN NaN NaN
10388 6331.30 6331.30 6331.00 6331.00 ... NaN NaN NaN NaN
10389 6330.93 6330.92 6330.92 6330.93 ... NaN NaN NaN NaN
10390 6330.83 6330.83 6330.90 6330.80 ... NaN NaN NaN NaN
10391 6327.57 6326.00 6326.00 6325.74 ... NaN NaN NaN NaN
10392 6327.57 6329.70 6328.85 6328.85 ... NaN NaN NaN NaN
10393 6323.54 6323.15 6323.15 6322.77 ... NaN NaN NaN NaN
10394 6311.00 6310.83 6310.83 6310.50 ... NaN NaN NaN NaN
10395 6311.45 6311.32 6310.01 6310.01 ... NaN NaN NaN NaN
10396 6310.46 6310.46 6310.56 6311.61 ... NaN NaN NaN NaN
 
[10397 rows x 1147 columns]

可以看到行數是分組個數,一共1147列也是最多的那組數據長度。

之后我們通過調用fillna方法將缺失值進行填充,method='ffill'是指以缺失值前一個數據為依據,axis = 1是以行為單位,limit是指最大填充長度。最終,把我們之前取得的timeseries添加到最后一列,就得到了需求的最終結果。

   0  1  2  ...  1145  1146  1148
0  6522.50 6522.66 6523.79 ...  6522.14 6522.14 25511135
1  6523.95 6524.90 6525.00 ...  6520.00 6520.00 25511136
2  6520.87 6520.00 6520.45 ...  6517.00 6517.00 25511137
3  6516.34 6516.26 6516.21 ...  6514.00 6514.00 25511138
4  6513.28 6514.00 6514.00 ...  6511.97 6511.97 25511139
5  6511.98 6511.98 6511.99 ...  6511.00 6511.00 25511140
6  6511.00 6511.00 6511.00 ...  6510.90 6510.90 25511141
7  6511.70 6511.78 6511.99 ...  6512.09 6512.09 25511142
8  6509.51 6510.00 6510.80 ...  6512.09 6512.09 25511143
9  6511.36 6510.00 6510.00 ...  6507.04 6507.04 25511144
10  6507.00 6507.00 6507.00 ...  6508.57 6508.57 25511145
11  6507.16 6507.74 6507.74 ...  6506.35 6506.35 25511146
...  ...  ...  ... ...   ...  ...  ...
10388 6331.30 6331.30 6331.00 ...  6331.00 6331.00 25521698
10389 6330.93 6330.92 6330.92 ...  6330.99 6330.99 25521699
10390 6330.83 6330.83 6330.90 ...  6327.58 6327.58 25521700
10391 6327.57 6326.00 6326.00 ...  6325.74 6325.74 25521701
10392 6327.57 6329.70 6328.85 ...  6325.00 6325.00 25521702
10393 6323.54 6323.15 6323.15 ...  6311.00 6311.00 25521703
10394 6311.00 6310.83 6310.83 ...  6315.00 6315.00 25521704
10395 6311.45 6311.32 6310.01 ...  6310.00 6310.00 25521705
10396 6310.46 6310.46 6310.56 ...  6314.04 6314.04 25521706
 
[10397 rows x 1148 columns]

以上為個人經驗,希望能給大家一個參考,也希望大家多多支持腳本之家。如有錯誤或未考慮完全的地方,望不吝賜教。

您可能感興趣的文章:
  • pandas 實現某一列分組,其他列合并成list
  • pandas 實現分組后取第N行
  • pandas分組排序 如何獲取第二大的數據
  • pandas group分組與agg聚合的實例
  • pandas groupby分組對象的組內排序解決方案
  • pandas組內排序,并在每個分組內按序打上序號的操作

標簽:日照 白城 天水 股票 西安 錦州 安慶 隨州

巨人網絡通訊聲明:本文標題《利用pandas按日期做分組運算的操作》,本文關鍵詞  利用,pandas,按,日期,做,分組,;如發現本文內容存在版權問題,煩請提供相關信息告之我們,我們將及時溝通與處理。本站內容系統采集于網絡,涉及言論、版權與本站無關。
  • 相關文章
  • 下面列出與本文章《利用pandas按日期做分組運算的操作》相關的同類信息!
  • 本頁收集關于利用pandas按日期做分組運算的操作的相關信息資訊供網民參考!
  • 推薦文章
    主站蜘蛛池模板: 藁城市| 光山县| 如皋市| 黄石市| 文昌市| 靖江市| 宣城市| 霍林郭勒市| 宽甸| 焉耆| 金沙县| 彭泽县| 临江市| 汉寿县| 辉县市| 稻城县| 西和县| 阿城市| 陵川县| 枣庄市| 绥江县| 乐东| 卓尼县| 苗栗县| 彝良县| 咸丰县| 娄烦县| 伊宁县| 新泰市| 丹凤县| 出国| 乐山市| 肥乡县| 中阳县| 济阳县| 岳池县| 金湖县| 翁牛特旗| 台南市| 怀安县| 洛川县|